

-34 C @ 25k ft

Nitrogen/Oxyge

Zero-carbon Ammonia-Powered Turboelectric Propulsion System (ZAPturbo)

Lance Smith, Raytheon Technologies Research Center (RTRC)

Project Vision

- Provide a liquid-fueled, carbon-free, non-cryogenic aircraft propulsion system for future flight.
- Leverage the unique properties of ammonia to achieve ultra-high energy efficiency (66%), to offset the extra weight-per-energy of ammonia.

REEACH / ASCEND Kickoff Meeting January 26, 27, 28, 2021

This presentation contains no technical data subject to the ITAR or EAR.

Fed. funding:	\$2.7M
Length	24 mo.

Context: Sustainability - seek zero in-flight carbon deposition, at commercial scale

History & Synergy: Hybrid-Electric Architecture for High Efficiency

- Synergy: Hybrid-Electric architecture enables
 NH₃ plant optimization for high-efficiency cruise
- History: Builds on RTX/RTRC
 Electrified Aircraft Propulsion (EAP)
 investment & research

CNLF: Recognize Ammonia's Unique Properties

- Liquid "hydrogen carrier" at non-cryogenic temperatures
- $-2 NH_3 \rightarrow N_2 + 3 H_2$
- High thermal absorption capacity, for waste-heat recovery
 basis for efficient system.....

ZAPturbo – Team

Team member	Location	Role in project
Raytheon Technologies Research Center (RTRC)	East Hartford, CT	Project lead (prime). Ammonia cracking and powerplant component/system development.
Pratt & Whitney	East Hartford, CT	ESPG system modeling & analysis: aircraft mission analysis; gas turbine performance & integration, flowpath, & sizing.
Gas Technology Institute	Des Plaines, IL	Ammonia handling & safety, storage, economics, TT&O.

Lance Smith (PI) Combustion & Fuels

Peter
Cocks
(co-PI)
Propulsion
Team Lead

Sean Emerson Catalysis & Chem Eng. Team Lead

Brian
Holley
Aerodynamics
& Turbine
Performance

Ulf Jonsson Rotating & Fluid / NH₃ Machinery

Brent Staubach – Advanced Concepts & Technology Group Leader: Oversight of PW system modeling, cycle analysis, & integration Jill Klinowski – Technical Coordinator for Technology Programs: Flight mission & engine-system analysis; engine integration studies

Howard
Meyer
Gas Processing
& Separations,
NH₃ Infrastructure,
ARPAe/T2M experience

Ronald Stanis Gas Conversion Tech., TT&O, Ammonia Energy Assoc. Representative

Travis
Pyrzynski
NH₃ Experience & Process
Safety Management,
Lab Procedures &
Protocols

CHANGING WHAT'S POSSIBLE

ZAPturbo – Innovation: Additional Detail

Hybrid-Electric Architecture for High Efficiency

- Cruise-optimized:
 - NH₃ cracking unit: size/weight optimized for cruise power & flows
 - Gas turbine: high-OPR, high-TRIT operation for efficiency @ cruise
 - Gas turbine thrust lapse enables climb power capability: same "reduced" conditions at cruise & climb
- Battery-boost for takeoff power only (recharged during cruise)
- Efficient AC-AC powertrain at turboelectric cruise

	Takeoff	Climbout	Climb	Hold	Cruise	Descend
Time (hours)	0.0833	0.1667	0.25	0.333	5.00	0.50
ESPG Power (% of 26-MW peak)	100%	70%	50%	35%	35%	30%
Power from fuel (% of peak)	70%	70%	50%	35%	35.50%	30%
Power from battery (% of peak)	30%	0%	0%	0%	-0.50%	0%

Use Ammonia's Thermal Absorption Capacity for High Efficiency

- NH₃ thermal absorption capacity, for waste-heat recovery:
 - High heat of vaporization & high heat capacity
 - No NH₃ temperature limit coke-free heating
 - Endothermic cracking (coke-free)
- 2 NH₃ → N₂ + 3 H₂ Δ H = 2.7 MJ/kg-NH₃ (15% gain)
- Hot fuel & NH₃ products provide further gains (5 10%)

ZAPturbo – Ammonia's Unique Properties (Very Useful)

- Non-cryogenic <u>hydrogen carrier</u>
 - > Store at -33 C (cruise temp.)
- Significant heat absorption capacity of NH₃ resulting from:
 - ✓ NH₃ thermal properties;
 - √ coke-free heating;
 - ✓ endothermic cracking;

Endothermic Cracking:

2 NH₃ \rightarrow N₂ + 3 H₂ ... \DeltaH = 2.7 MJ/kg-NH₃

Table 3: Summary of Properties for Fuels in Liquid Form			
Fuel Property	Jet-A	H ₂	NH ₃ - anhydrous
,	(ambient liquid)	(–253 °C liquid)	(–33 °C liquid)
Specific Energy (MJ/kg)	43 MJ/kg	120 MJ/kg	18.6 MJ/kg
Energy Density (MJ/L)	34 MJ/L	8.5 MJ/L	12.7 MJ/L
T_saturation @ 1-atm (°C)	175 - 250 °C	−253 °C	− 33 °C
T_saturation @ 10-atm (°C)	325 - 350 °C	−242 °C	+25 °C
T_critical (°C)	375 - 400 °C	−240 °C	+132 °C
P_critical (bar)	19 - 24 bar	12.9 bar	113 bar
Conductivity, k (W/m-K)	0.1 W/m-K	0.1 W/m-K	0.6 W/m-K
Heat Capacity, Cp (kJ/kg-K)	2.0 kJ/kg-K	9.7 kJ/kg-K	4.5 kJ/kg-K
Heat of Vaporization, h_fg (kJ/kg)	350 kJ/kg	446 kJ/kg	1370 kJ/kg
Heat of Cracking reaction (kJ/kg)	achievable? (coke)	N/A	2700 kJ/kg

Compare heat-absorption potential of NH_3 to JP-8 fuel: 5 - 10X +

Cooling Method	JP-8	Ammonia (NH3)
Heat fuel (liquid): 25°C - 125°C (electronics, oil)	220	450
Evaporate liquid fuel @ 125°C		500
Heat fuel** (vapor or liquid): 125°C – 525°C		1000 - 1500
Endothermic** cracking of fuel (partial or full)		up to 2500
**Coke-free for NH3 only (w/out e.g. de-oxygen.)	Cooling Capacity (kJ/kg)	

ZAPturbo – Risks and Challenges

Identifying primary risks to project's success.

#	Risk	Impact	Potential Mitigation Steps
1 (Ph-1)	Ammonia safety, handling, and/or material compatibility concerns	Lab restrictions or delays; Slow technology adoption	Proactively address protocols & practicesExplore alternative insertion platforms (freight)
2 (Ph-1)	Unsatisfactory NH ₃ cracking catalyst performance	Lessened fuel efficiency; Combustion stability	 Explore cycle alternatives to help (P ↓ ; T ↑) Seek alternate catalysts & promoters
3 (Ph-1)	Plant integration: component mismatch across mission (lapse)	Cracker performance shift; Combustion stability / NOx	Shift heat sources or cracker conditionsEvaluate combustor robustness & designs
4 (Ph-2)	Plant integration: control of transients, startup/shutdown	Need for ground support or complex workarounds	Capitalize on hybrid-electric system availabilityAdopt learning from combined-cycle plants
5 (Ph-2)	Ammonia combustion: NOx emissions due to fuel-bound N-atoms	Regulatory concerns; Slow technology adoption	 Obtain/develop/evaluate NH₃ models for NOx Acquire sub-scale gas-turbine combustor data
6 (Ph-2)	Ammonia combustion: stability & anchoring – unknown @ GT conditions	Non-optimal combustor design (large, high-NOx,)	 Obtain/develop/eval. NH₃ combustion models Acquire sub-scale gas-turbine combustor data

ZAPturbo – Initial Risk Assessment

Risk	#
Ammonia safety, handling, and/or material compatibility concerns	1 (Ph-1)
Unsatisfactory NH ₃ cracking catalyst performance	2 (Ph-1)
Plant integration: component mismatch across mission (lapse)	3 (Ph-1)
Plant integration: control of transients, startup/shutdown	4 (Ph-2)
Ammonia combustion: NOx emissions due to fuel-bound N	5 (Ph-2)
Ammonia combustion: stability & anchoring – unknown @ GT cond.	6 (Ph-2)

ZAPturbo – Task Outline & Technical Objectives

Phase-1: Risk Reduction Experiments & Conceptual Propulsion System Design

- Tasks:
 - System evaluation & integration: component matching & performance requirements for ESPG conceptual design
 - Conceptual/modeling design of low-NOx combustor, for ammonia-based fuel
 - High-pressure experimental evaluation of ammonia cracking catalysts
 - Testing & demonstration of ammonia-handling materials & components, and of laboratory cracking unit at high-P
- Objectives:
 - Define component operating conditions, as needed to achieve target efficiency (66%)
 - Demonstrate high-pressure ammonia cracking unit, with performance sufficient to support 66% efficiency target

Phase-2: Sub-Scale Demonstration of ~100-kW Fuel-to-Electricity Conversion

- Tasks:
 - Bench-scale testing & evaluation of low-NOx combustor design(s), for ammonia-based fuel
 - Design and Fabricate Required Components for ~100-kW Demonstration:
 - o Sub-scale high-pressure ammonia cracking unit
 - o Sub-scale high-pressure combustor for ammonia-based fuel
 - o ~100-kW AC turbogenerator
 - During operation, measure electric power generation, and all energy inflows & outflows: report thermal efficiency
 - Measure NOx concentration in exhaust
- Objective: In sub-scale test, show technical viability of 66% energy conversion efficiency (

ZAPturbo – Technology-to-Market Approach

- Commercialization plans:
 - The ZAPturbo project plans have been communicated to RTX commercial aerospace BUs:
 - Pratt & Whitney Aircraft (PWA) large commercial engines
 - Pratt & Whitney Canada (PWC) regional & business aircraft engines
 - Collins Aerospace aircraft fuel systems
 - There is now significant BU and customer interest in sustainable aviation: the ZAPturbo team will continue to report progress to RTX BUs, and engage with them regarding future markets & opportunities.
 - GTI is actively engaged in the ammonia energy community, including the Ammonia Energy Association, and will facilitate new customer interactions with the team.
- Anticipated first markets:
 - Business aircraft may be a first entry point, based on customer interest & potential investment.
- Anticipated long-term markets:
 - Commercial aviation will provide the largest impact.
- Timeline TBD.

https://arpa-e.energy.gov

Phase 1 Program Kickoff Meeting January 26, 27, 28, 2021 – WebEx

